Long-Term Progressive Degradation of the Biological Capability of Titanium
نویسندگان
چکیده
Titanium undergoes time-dependent degradation in biological capability, or "biological aging". It is unknown whether the biological aging of titanium occurs beyond four weeks and whether age-related changes are definitely associated with surface hydrophilicity. We therefore measured multiple biological parameters of bone marrow-derived osteoblasts cultured on newly prepared, one-month-old, three-month-old, and six-month-old acid-etched titanium surfaces, as well as the hydrophilicity of these surfaces. New surfaces were superhydrophilic with a contact angle of ddH₂O of 0°, whereas old surfaces were all hydrophobic with the contact angle of around 90°. Cell attachment, cell spread, cell density, and alkaline phosphatase activity were highest on new surfaces and decreased in a time-dependent manner. These decreases persisted and remained significant for most of the biological parameters up to six-months. While the number of attached cells was negatively correlated with hydrophilicity, the other measured parameters were not. The biological capability of titanium continues to degrade up to six months of aging, but these effects are not directly associated with time-dependent reductions in hydrophilicity. A full understanding of the biological aging will help guide regulatory improvements in implant device manufacturing and develop countermeasures against this phenomenon in order to improve clinical outcomes.
منابع مشابه
Production of Xanthanases by Paenibacillus spp.: Complete Xanthan Degradation and Possible Applications
Background: A number of microorganisms and their enzymes have been reported as xanthan depolymerizers. Paenibacillus species are well-known polysaccharide hydrolyzing bacteria. However, Paenibacillus alginolyticus and Paenibacillus sp.XD are the only species in the genus which are now known to degrade xanthan.Objectives: Complete biodegradation of the xan...
متن کاملOptimization of photo-degradation of direct blue 258 using nano Titanium Oxide with response surface method
The photodegradation of Direct Blue 258, a member of the group of azo dyes which are commonly used in the various branches of the industry, was studied. The photostability of this dye was not previously surveyed. Photocatalytic degradation method was evaluated. The both light source include solar simulated (UV 400 W lamp) and sun light (E= 400 W/m2) and titanium dioxide nanoparticles were used ...
متن کاملOptimization of photo-degradation of direct blue 258 using nano Titanium Oxide with response surface method
The photodegradation of Direct Blue 258, a member of the group of azo dyes which are commonly used in the various branches of the industry, was studied. The photostability of this dye was not previously surveyed. Photocatalytic degradation method was evaluated. The both light source include solar simulated (UV 400 W lamp) and sun light (E= 400 W/m2) and titanium dioxide nanoparticles were used ...
متن کاملP-59: Investigation of Simultaneous Exposure to Noise and Formaldehyde Vapor on Mouse Reproductive Function
Background: Formaldehyde (FA) is a member of aldehyde family with a simplest organic molecule, used in various industries. Since there is simultaneous exposure of formaldehyde and noise for workers in most of the workplaces and that noise can reinforce the harmful effects of some chemical pollutants. This study aimed to investigate the effects of simultaneous formaldehyde and noise exposure on ...
متن کاملTiO2 Thin Film: Preparation, Characterization, and its Photocatalytic Degradation of Basic Yellow 28 Dye
In this research, the thin films of N-S doped titanium dioxide (TiO2) were successfully prepared by simple sol-gel method in the presence of tetrabutylorthotitanate as a starting reagent. Furthermore, titanium dioxide (TiO2) was functionalized with thiourea. Furthermore, N-S doped titanium dioxides (NSTO) were fixed on glass balls by glass balls fixed-bed reactor system. Besides, the effect of ...
متن کامل